
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/225105985

Dynamic Programming for Minimum Steiner Trees

Article in Theory of Computing Systems · January 2007

DOI: 10.1007/s00224-007-1324-4 · Source: DBLP

CITATIONS

49
READS

335

6 authors, including:

Walter Kern

University of Twente

164 PUBLICATIONS 2,276 CITATIONS

SEE PROFILE

Stefan Richter

bitcoinprivacy.net

21 PUBLICATIONS 779 CITATIONS

SEE PROFILE

Xinhui Wang

Amsterdam University Medical Center

47 PUBLICATIONS 592 CITATIONS

SEE PROFILE

All content following this page was uploaded by Walter Kern on 18 December 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/225105985_Dynamic_Programming_for_Minimum_Steiner_Trees?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/225105985_Dynamic_Programming_for_Minimum_Steiner_Trees?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Walter_Kern3?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Walter_Kern3?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Twente?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Walter_Kern3?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan_Richter10?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan_Richter10?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan_Richter10?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinhui_Wang5?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinhui_Wang5?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Amsterdam_University_Medical_Center?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinhui_Wang5?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Walter_Kern3?enrichId=rgreq-31c4af0bcf98c9bcb9648a454505bdcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNTEwNTk4NTtBUzoxMDM3OTY4OTgyNzEyNDZAMTQwMTc1ODUxNzk2Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Dynamic Programming for

Minimum Steiner Trees

B. Fuchsa W. Kernb D. Möllec∗ S. Richterc

P. Rossmanithc X. Wangb†

January 23, 2006

a University of Cologne, Center for Applied Computer Science Cologne,
Group AFS, Weyertal 80, 50931 Köln, Germany

b University of Twente, Department of Applied Mathematics, Faculty of
EEMCS, P.O.Box 217, 7500 AE Enschede, The Netherlands

c Computer Science Department, RWTH Aachen University, Germany

Abstract

We present a new dynamic programming algorithm that solves the
minimum Steiner tree problem on graphs with k terminals in time
O∗(ck) for any c > 2. This improves the running time of the previ-
ously fastest parameterized algorithm by Dreyfus–Wagner [2] of order
O∗(3k) and the so-called “full set dynamic programming” algorithm [3]
solving rectilinear instances in time O∗(2.38k).

1 Introduction

The Steiner tree problem on graphs is one of the best-known NP-hard prob-
lems: Given a graph G = (V, E) of order n = |V |, edge costs c : E → R+ and
a set Y ⊆ V of k = |Y | terminals, we are to find a minimum cost tree T ⊆ E
connecting all terminals. Note that here and in the following, we identify a
subtree of the underlying graph with its edge set T ⊆ E. The node set of the

∗Supported by the Deutsche Forschungsgemeinschaft (DFG) under grant RO 927/6
(TAPI).

†Supported by Netherlands Organization for Scientific Research (NWO) grant
613.000.322 (Exact Algorithms).

1

tree is denoted by V (T). So an optimal Steiner tree for Y is a tree T = T (Y)
that minimizes c(T) subject to Y ⊆ V (T).

The Steiner tree problem has been investigated extensively w.r.t. approx-
imation (e.g., [1]) and computational complexity, both from a theoretical and
practical point of view ([3], [8]). The most popular algorithm for computing
minimum Steiner trees is the dynamic programming procedure proposed by
Dreyfus and Wagner [2] which we shortly present below to make our presen-
tation self-contained.

First note that (since c ≥ 0) every leaf of a minimum Steiner tree must
be a terminal. Every interior node is either a terminal or a Steiner node. To
describe the Dreyfus-Wagner algorithm, let us adopt the following (rather
ambiguous) notation: For X ⊆ V we let T (X) denote both the cost of a
minimum Steiner tree for X as well as the minimum Steiner tree itself.

The Dreyfus-Wagner algorithm recursively computes1T (X ∪ v) for all
X ⊆ Y and v ∈ V . In the “generic case”, the new terminal v ∈ V is a leaf
of the Steiner tree T = T (X ∪ v) and v is joined by a cheapest path Pvw

to an interior node w ∈ V (T) of degree at least three. The node w splits
T\Pvw into two parts, namely T (X ′ ∪w) and T (X ′′ ∪w) for some nontrivial
bipartition X = X ′∪X ′′. Hence we may write (slightly misusing the notation
as announced earlier)

T (X ∪ v) = min
(

Pvw ∪ T (X ′ ∪ w) ∪ T (X ′′ ∪ w)
)

,

where the minimum is taken over all nontrivial bipartitions X = X ′ ∪ X ′′

and all w ∈ V .
The above recursion is also valid in the“non-generic cases,” when the new

terminal v is not a leaf of T (choose w = v) or when v is joined by Pvw to a
leaf of T (X), i.e., when w has only degree two in T (take X ′ = {w} in this
case).

Summarizing, the above recursion correctly computes an optimal tree for
Y ⊆ V . As to the running time, observe that there are less than n

(

k
i

)

sets
of type X ∪ v with |X| = i and each such X has less than 2i nontrivial
bipartitions. Hence we get

n
∑

i≤k

(

k

i

)

2i = n3k = O∗(3k)

as an upper bound on the running time of the critical part of the algorithm.
In this paper we develop a new algorithm that constructs an optimal

solution from parts that have ony a small number of terminals. This is only

1We abbreviate X ∪ {v} by X ∪ v from now on.

2

Figure 1: An optimum Steiner tree and its components

possible after adding additional terminals that split this optimal solution
into small parts. Since the solution is unknown and 1/ε additional terminals
are added, we have to try all n1/ε possibilities, which results in an extra

polynomial factor. The first algorithm we present has running time O
(

(2 +

δ)kn11 ln(δ)/δ = O∗ ((2 + δ)) for any 1 < δ < 2. The second algorithm is
more complicated and constructs the solution from parts of varying sizes
thus needing less additional terminals. Its running time is then = O

(

(2 +

δ)kn12/
√

δ/ ln(1/δ)
)

for sufficiently small δ.

2 Improving the exponential time bound

Let us fix some minimum Steiner tree T = T (Y) for Y . Every leaf of T is
a terminal. In case T has interior nodes which are terminals, these interior

terminals split T into components, i.e., maximal subtrees without any inte-
rior terminals. The basic idea of our approach is to add a few additional
terminals so as to ensure that T is split into many “small” components and
then recursively reconstruct T from these small components. Here and in the
following, the size of a component equals the number of terminals (leaves)
of the component.

Lemma 1 For ε > 0, adding at most 1/ε additional terminals suffices in

order to split T into components of size at most εk + 1 each.

Proof. We may assume w.l.o.g. that T has no interior terminals. For an
interior node u ∈ V (T), let ku ≤ k − 1 denote the maximum size of the
components induced by u, including u. There exists a node u with ku ≤
k/2 + 1. Hence there also exists a node u∗ that maximizes ku∗ , subject to

3

ku∗ ≤ k − kε. Observe that u∗ splits T into one large component of size ku∗

and one or more components of size (including u∗) at most εk + 1 each. By
induction, the large component can be split into components of size at most

ε
1−ε

ku∗ + 1 ≤ εk + 1 with no more than 1−ε
ε

= 1
ε
− 1 additional terminals. �

To describe our algorithm that reconstructs an optimal Steiner tree T (Z)
for Y by successively attaching small components, we adopt the following
notation for terminal sets X1, X2 and X [3]:

X := X1 ⊲⊳ X2 ⇔ X = X1 ∪ X2 and |X1 ∩ X2| = 1.

The following algorithm recursively composes an optimal tree for Y by
successively attaching small components, once an appropriate set A of addi-
tional terminals is chosen.

Algorithm ASC (“Attach Small Components”)

For each Ỹ , Y ⊆ Ỹ ⊆ V, |Ỹ | = k +
⌊

1
ε

⌋

do:

1) Compute T (X) for all X ⊆ Ỹ , |X| ≤ εk + 1.

2) For all X ⊆ Ỹ , |X| > εk + 1, compute T (X) recursively, according to

T (X) = min{ T (X1) ∪ T (X2) | X = X1 ⊲⊳ X2, |X2| ≤ εk + 1 }. (2)

We can now establish our main results:

Theorem 1 Algorithm ASC correctly computes a minimum Steiner tree for

Y ⊆ V .

Proof. Let T be a minimum Steiner tree for Y . Assume that A ⊆ V (T)
with |A| = ⌊1/ε⌋ has been added as a set of additional terminals, splitting
T = T (Y) into components of size at most εk + 1. Let Ỹ = Y ∪ A, so
that T = T (Ỹ). If X1 ⊆ Ỹ is the terminal set of a connected union T ′ of
components, then T ′ must be a minimum Steiner tree for X1—otherwise, T
would not be optimal.

We show by induction on |X| that the algorithm computes a minimum
Steiner tree for X ⊆ Ỹ if X is the terminal set of a connected union TX of
components of T . Since Ỹ itself has this property, the correctness follows.

For |X| ≤ εk + 1 we can make use of the Dreyfus–Wagner algorithm and
thus get optimal trees even for all such X.

Otherwise we can decompose X into X = X1 ⊲⊳ X2, where X1 and
X2 are terminal sets of connected components T1 resp. T2 of T . Moreover,
|X2| ≤ εk + 1. Then TX is a minimum Steiner tree for X. By the induction
hypothesis the algorithm computes minimum Steiner trees T (X1) and T (X2)

4

X2

X1

X1

X1, X2

X2

X2

X1

X1

X1, X2

X2

X2

X1

X1

X1, X2

X2

Figure 2: Two optimal Steiner trees for X1, X2 that do not combine to form
an optimal Steiner tree for X1 ⊲⊳ X2 (assuming unit-weight edges), compared
to an optimal Steiner tree for X1 ⊲⊳ X2

for X1 and X2. It is easy to verify that we can replace T1 by T (X1) and T2

by T (X2) in TX to get another minimum Steiner tree for X. Obviously, this
replacement yields T (X1) ∪ T (X2) as calculated by the algorithm. �

Note that if X = X1 ⊲⊳ X2 and T (X1), T (X2) are minimum Steiner trees
for X1 and X2 then T (X1)∪ T (X2) is in general not a minimum Steiner tree
for X. Figure 2 contains a counterexample.

Theorem 2 For Y ⊆ V and k = |Y | Algorithm ASC runs in time O∗((2 +
δ)k) for any 0 < δ < 1 for an appropriate choice of ε > 0. In particular, the

running time can be bounded by O
(

(2 + δ)kn−11 ln(δ)/δ
)

.

Proof. There are O(n1/ε) choices for Ỹ of size k̃ = k+⌊1/ε⌋. The time needed
for 1) (using Dreyfus-Wagner) is negligible for reasonably small ε > 0. So
the total running time is bounded by

n1/ε
∑

i

(

k̃

i

)(

i

εk + 1

)

≤ n1/ε k̃ 2k̃

(

k̃/2

εk̃

)

. (3)

By a variant of Stirling’s formula, n! =
√

2πn(n/e)nθ with 1 < θ < 1.1,
the binomial coefficient in (3) can be bounded by

(

k̃/2

εk̃

)

≤
[

(1

2ε

)ε(1

1 − 2ε

)
1

2
−ε

]k̃

.

Since we desire a running time of the form O∗((2 + δ)k), let us choose
ε = 5

18
δ/ ln 1

δ3 . Then δ3 < 2ε for δ < 1 and

ε ln
1

2ε
≤ 5

18
δ ≤ δ

3
− δ2

18
≤ ln(1 +

δ

3
)

5

using Taylor expansion.2 Exponentiating yields (1/2ε)ε ≤ 1 + δ/3. On the
other hand,

(

1

1 − 2ε

)1/2−ε

≤ 1 + ε ≤ 1 + δ/8,

because ln(1 + x) ≥ x − x2/2 for 0 < x ≤ 1 and consequently

(1

2
− ε

)

ln
(1

1 − 2ε

)

≤
(1

2
− ε

)

(2ε − 2ε2) ≤ ε − ε2/2 ≤ ln(1 + ε).

Hence
(1

2ε

)ε(1

1 − 2ε

)
1

2
−ε

≤ (1 + δ/3)(1 + δ/8) ≤ 1 + δ/2,

which lets us bound the running time at O
(

(2 + δ)kn− 54 ln δ
5δ

)

. �

Remark 1 The idea of composing the optimal tree from its components has
been used by Ganley and Cohoon [4] in the rectilinear case, i.e., when Y ⊆ R

2

and (V, E) is the grid graph induced by Y endowed with the Manhattan met-
ric |x−y| = |x1−y1|+ |x2−y2|. The currently fastest algorithms for minimal
Steiner tree in the rectilinear case are based on this (de-)composition [3]. The
point is that in the rectilinear case, a lot can be said about the structure of
these components. Indeed, it can be assumed w.l.o.g. that each component
of the optimal tree consists of a straight line—the Steiner Chain—which
starts at a terminal node and has edges (legs) attached to it alternatively
from left and right. In addition, the last leg may have an additional edge
attached to it.

This structure of components in the rectilinear case is known as Hwang

topology [6]. The components in the rectilinear case are called full components

and, correspondingly, a subset X ⊆ Y is called a full set if X is the terminal
set of a Steiner tree that is a component with Hwang topology. Exploiting
additional structural properties of full components, Fößmeier and Kaufmann
[3] could show that the number of full sets is bounded by 1.38k. Full sets can
be identified easily, so the recursive construction of the optimal tree according
to

T (X) = min{ T (X1) ∪ T (X2) | X = X1 ⊲⊳ X2 ⊆ Y, X2 full }
takes time

∑

i

(

k

i

)

1.38i = O∗(2.38k).

2For δ ≤ 1/8 we might take ε = 5

18
δ/ ln 1

δ2 or even smaller to get a running time of

O
(

(2+δ)kn− 36

5
ln δ/δ

)

, but in order to ease the analysis we exchange tightness for generality.

6

It remains to be analyzed whether our idea of splitting the optimal tree
can be fruitfully applied to the rectilinear case to yield an algorithm with
complexity O∗(ck) without such a prohibitively large polynomial factor of n

1

ε .

Remark 2 An analogue of ASC can be designed to solve the directed Steiner

tree problem, where the underlying graph (V, E) is a directed graph and we
seek for a directed rooted tree (with prescribed root terminal) connecting Y .
Indeed, it suffices to compute rooted Steiner trees Tr(X) (rooted in r ∈ X)
for all small X ⊆ Ỹ and then attach these successively in the obvious way.

3 Improving the polynomial factor

In this section we show how to improve the polynomial factor of n1/ε to
nO(1/

√
ε) for sufficiently small δ and ε = 5

36
δ/ln(1/δ). The basic idea is as

follows. Instead of recursively constructing the optimal tree T by adding
components of size εk in each step, we allow the addition of larger pieces at
levels i ≪ k/2 and i ≫ k/2. Only when i ≈ k/2, we proceed by adding small
components of size εk as before.

To work this out in detail, we need the following technical result:

Lemma 2 For sufficiently small α > 0 and ε′ < α2 we have

(

k

i

)(

i

ε′k

)

≤ 2k

for all i such that |k/2 − i| ≥ αk.

Proof. If suffices to prove the claim for i = (1
2

+ α)k. By Stirling’s Formula,
we compute

(

k

(1
2

+ α)k

)(

(1
2

+ α)k)

ε′k

)

≤
[

(

1
1
2
− α

)
1

2
−α (

1

ε′

)ε′ (
1

1
2

+ α − ε′

)
1

2
+α−ε′

]k

.

Hence, setting ε′ = αβ with β > 2, our claim can be restated as

f(α) :=
(1

2
− α

)
1

2
−α

(αβ)αβ
(1

2
+ α − αβ

)
1

2
+α−αβ

≥ 1

2
.

Note that f(0) = 1
2
. Elementary calculus yields

f ′(α) = f(α)
[

− ln
(1

2
− α

)

+ β2αβ−1 lnα + (1 − βαβ−1) ln
(1

2
+ α − αβ

)]

.

7

Let g(α) denote the term in brackets. Then g(0) = 0 (as lim
α→0

αβ−1 ln α = 0)

and

g′(α) = (1
2
− α)−1 + β2(β − 1)αβ−2 ln α + β2αβ−2

− β(β − 1)αβ−2 ln(1
2
− α − αβ) + (1 − βαβ−1)2(1

2
− α − αβ).

Now β > 2 implies lim
α→0

αβ−2 ln α = 0, showing that g′(α) ≈ 4 > 0 for

sufficiently small α > 0. Hence also g(α) and f ′(α) = f(α)g(α) are positive
for sufficiently small values of α. So indeed f(α) ≥ 1

2
for sufficiently small

α > 0. �

Let us call—relative to a value of α to be determined below—a level i
critical if |k/2 − i| ≤ αk, and uncritical otherwise. We modify the recur-
sion (2) in ASC such that, as long as i is uncritical, we replace ε by ε′ > ε,
whereas for critical i, everything remains unchanged. Lemma 2 ensures that
our upper bound on the running time of (2) remains unchanged:

∑

i uncritical

(

k̃

i

)(

i

ε′k̃

)

+
∑

i critical

(

k̃

i

)(

i

εk̃

)

≤ k̃ 2k̃

(

k̃/2

εk̃

)

.

Corresponding to the modified recursion, we investigate non-homogeneous
subdivisions of the optimal tree T into (many) components of size at most
ε′k and (a few) components of size at most εk. We first add 1

ε′
additional

terminals to ensure a component size of at most ε′k +1. Now add such com-
ponents in some order, one at a time, until the constructed subtree spans
(1

2
− α)k̃ terminals.
At this point, we enter the critical phase. We keep adding ε′−components

until the current subtree has (1
2

+ α)k̃ terminals. At this point the critical
phase stops. The critical subtree, i.e., the subtree of T that we added during
the critical phase spans at most 2αk̃ (plus possibly ε′k̃ terminals). We can
subdivide this critical subtree into ε−components with at most (2α/ε) ad-
ditional terminals. After the critical phase, we complete the optimal tree by
adding ε′-components, one at a time. This shows that, in order to make the
modified recursion (2) work, it suffices to add

a ≤ 2α/ε + 1/ε′

additional terminals.
Now choose ρ = ε

1

2
+ln ε and observe that α := ερ =

√
ε/e and ε′ := ες

with ς = 1
2

+ ρ satisfy the assumption of Lemma 2 (for sufficiently small
ε > 0). The number of necessary additional terminals is thus

a ≤ 2ερ/ε +
1

ες
.

8

Applying the same trick to ε′ instead of ε, we can further reduce the
necessary number of additional terminals to

a ≤ 2ερ/ε + 2(ερ/ε)ς +
1

ες2
.

Continuing this way, we arrive at

Proposition 1 The number of necessary additional terminals can be re-

duced to 4.38ε−1/2.

Proof. Let r = −1/ ln ε and ζ = 1
2

+ ρ. If we apply our trick (r − 1) times,
we arrive at

a ≤ 2
[

ερ/ε + (ερ/ε)ς + · · · + (ερ/ε)ςr−1
]

+
1

εςr .

Since
(

ερ−1
)ζi

(

ερ−1
)ζi+1

=
(1

e

)(1/2−1/ ln ε)(1−1 ln ε)i

≤
(1

e

)1/2e

,

we have

ερ/ε + (ερ/ε)ς + · · · + (ερ/ε)ςr−1 ≤
∞

∑

i=0

ερ

ε

(1

e

)k/2e

=

=
ερ

ε

1

1 − e−1/2e
=

1√
εe(1 − e−1/2e)

<
2.19√

ε

and a short calculation shows 1/εζr

< 1 (so nothing more is required after r−1
recursive applications of the refinement trick). This means that a ≤ 4.38/

√
ε

additional terminals suffice. �

The overall running time to compute optimal Steiner trees then becomes

O((2 + δ)kn4.38/
√

ε) = O
(

(2 + δ)kn12/
√

δ/ ln(1/δ)
)

.

Historical Note. Since 1972 there had been no improvement on the clas-
sical Dreyfus–Wagner algorithm for the Steiner tree problem. Then, in 2004,
at least four groups began work on this problem independently. Two of
them—one in Aachen and one in Enschede and Cologne—eventually found
algorithms that improved the running time to O∗((2+ε)k

)

[7] and O∗(2.68k).
They met in Dagstuhl at the Workshop on Parameterized Complexity and
Exact Algorithms in 2005, joining their work thereafter.

9

References

[1] C. Gröpl, S. Hougardy, T. Nierhoff and H. J. Prömel, (2001) Approxi-
mation Algorithms for the Steiner Tree Problem in Graphs, in: Steiner

Trees in Industries, X. Cheng and D.-Z. Du (eds.), Kluwer.

[2] S. E. Dreyfus and R. A. Wagner, (1972) The Steiner problem in graphs.
Networks, 1, 195–207.

[3] U. Fößmeier and M. Kaufmann, (2000) On exact solutions for the recti-
linear Steiner tree problem Part 1: Theoretical results. Algorithmica, 26,
68–99.

[4] J. L. Ganley and J. P. Cohoon, (1994) Optimal rectilinear Steiner min-
imal trees in O(n22.62n) time, in: Proceedings of the Sixth Canadian

Conference on Computational Geometry, 308–313.

[5] M. Garey and D. Johnson, (1977) The Rectilinear Steiner Tree Problem
is NP-Complete, SIAM Journal on Applied Mathematics 32(4), 826–834.

[6] F. K. Hwang, (1976) On Steiner Minimal Trees with Rectilinear Distance.
SIAM Journal on Applied Mathematics, 30(1), 104–114.

[7] D. Mölle, S. Richter, and P. Rossmanith. A faster algorithm for the
Steiner tree problem. In Proc. of 23rd STACS. 2006.

[8] D. M. Warme, P. Winter and M. Zachariasen, (2000) Exact Algorithms
for Plane Steiner Tree Problems: A Computational Study, in: Advances

in Steiner Trees, D.Z. Du, J.M. Smith and J.H. Rubinstein (eds.), Kluwer.

10

View publication statsView publication stats

https://www.researchgate.net/publication/225105985

